Tuesday 12 November 2013

Oxford Varsity Develops “Nano-Train” Chemical Transport System

Scientists at Oxford University and Warwick University have created a “nano-train” – a nanoscale transport network controlled by DNA.


The systems uses self-assembling tracks up to tens of microns long and “shuttles” made from kinesin, a motor protein. The researchers were able to use the system to concentrate a fluorescent green dye in the center of the network of tracks, causing a colour change.

Systems like this could be used to move other chemical cargo around – for example, collecting dilute chemicals and bringing them together in one spot to allow chemical reactions to happen faster.

More complicated systems could also be made to behave like a construction site, using DNA and motor proteins to move components around a template for directed nanoassembly of much more complex structures.

The research, inspired by the way fish control the color of their skin, was published in Nature Nanotechnology. Fish cells contain melanophores, which in turn contain a network of radiating spokes.

Motor proteins carry pigment around this network -either concentrating it in the center, leaving much of the cell transparent, or spreading it out, giving the cell a more pronounced colouring.

The system developed by the Oxford researchers works in a very similar way. Assembler “nanobots”, containing two kinesin motor proteins and a short strand of DNA for control, move around the network constructing the tracks.

The simpler carrier shuttle bots, containing just one kinesin protein, then carry their cargo around the network, using the chemical fuel ATP just like living cells. 

No comments:

Post a Comment